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Abstract—Continual wavering of outside weather degrades
the efficiency of inside building envelope over time and leads
to additional energy consumption, various structural damages,
etc. Frequent monitoring of the indoor built environment with
thermal images can assist in identifying the energy-leaking and
potentially damage-prone areas. Although in recent years dif-
ferent researches performed deep learning and computer vision
based thermal anomaly detection in built environment, several is-
sues related to conducting strategic non-intrusive indoor thermal
inspection using temporal thermal images, are still unresolved in
uncontrolled environment of residential buildings. In this work,
we propose a scalable thermal image-based monitoring approach
for building envelopes combining the visual knowledge of struc-
tural joint information among different building components
and their corresponding temporal thermal status. We collected
longitudinal thermal images from indoor scenes of different
building components (e.g., door, window, wall) and employed
a high-level spatio-temporal graph (st-graph) to represent the
structural connection among different building components and
their temporal self-changes. Our proposed novel unsupervised
spatio-temporal clustering framework assigns the cluster label
to nodes in st-graph, combining its structural (the self and
neighboring component) and temporal features which achieves
better performance in identifying thermal variation compared
to other clustering based approaches. We demonstrate thermal
variation across the spots which indicates the potential energy
leakage areas inside the built environment. The cluster patterns
obtained from our proposed model assist in understanding the
thermal characteristics of various surfaces at certain conditions,
such as sun reflection and airflow in the inside built environment.

Index Terms—Unsupervised thermal variation, Deep Cluster-
ing, Thermal anomalies, Building components, Indoor spaces

I. INTRODUCTION

A sustainable building envelope ensures efficient energy
consumption and the thermal comfort of inhabitants inside
the built environment. According to a U.S. Energy Informa-
tion Administration (EIA) study, each household in the USA
spends approximately $1500 USD on average for energy utility
bills per year [1]. Around 51% of energy consumption in
residential buildings contributes to space heating and cool-
ing [2]. Different building components (i.e., walls, windows,
doors) contribute to a significant portion of total energy loss
due to air leakages, structural deformation, poor insulation
materials, etc. From a study on the energy loss through
building components, it appears that 35% air leakages are
caused by walls, 25% by windows, 25% by roofs or attics,
and 15% by floors [3]. Home energy audit expert inspects the

inside built environment to identify energy leakage areas and
recommend a potential improvement for renovation. Expert-
driven leakage area detection requires a thorough frequent
inspection of the inside environment, which is time-consuming
and expensive. These frequent thermal variation inspection
using conventional intrusive equipment is not feasible in
residential buildings. Therefore, automatically identifying the
potential thermal leakages-prone area helps home energy audit
experts quickly inspect the area and recommend necessary
improvements and steps to reduce energy usage. Since in and
outflow of air through small places can change the surface’s
thermal condition over time, we consider these sudden thermal
behavior changes as thermal anomalies on the built environ-
ment surfaces as a proxy for potential energy leakage area
detection that could prevent additional energy loss.

Monitoring inside thermal conditions can also help demon-
strate the outside environment’s impact on analyzing and
controlling inside thermal conditions [4]–[6]. Unfortunately,
few recent studies focus on thermal variation for a limited
number of home spaces to propose theoretical computation
of building envelope efficiency and measures the performance
of building envelopes in a simulated controlled experimental
environment [7]–[9] due to the lack of inbuilt environment
longitudinal thermal changes data. Researchers also conduct a
field study to explore thermal auditing using smartphones and
showcase qualitative analysis of thermal behavioral changes
inside the home. This qualitative approach helps analyze
thermal changes in conventional thermal leakage-prone areas
such as windows and doors, etc.; however, it failed to capture
the longitudinal thermal behavior of non-conventional thermal
leakage-prone building components (e.g., wall, ceiling). Our
work focuses on developing systematic quantitative longi-
tudinal thermal changes (thermal anomaly) of conventional
and non-conventional thermal leakage-prone building com-
ponents in the natural home environment. Developing the
quantitative thermal behavioral changes monitoring framework
requires systematic data acquisition, scalable system design,
integration, and appropriate evaluation of existing IoT-based
techniques. Besides, investigating building efficiency requires
tuning a large set of parameters (e.g., in and out airflow,
inside wind velocity, room pressure, light reflection, etc.)
and metadata (e.g., building material types, material decay,
etc.), which is often unavailable and inconvenient for detailed



inspection. To overcome these challenges, in this work, we
perform thermal condition analysis of multiple spaces simul-
taneously in the absence of building metadata by using the
structural information obtained from visual observation.

In the recent past, a limited number of studies explored and
quantified building energy leakage from thermal images [10]
[11]. [10] detects thermal leakage using threshold techniques,
and [11] uses a supervised simplified capsule network to
identify thermal leakage using small annotated samples. In
this work, we propose a novel unsupervised spatio-temporal
graph clustering technique to monitor the thermal variation of
different places inside the built environment from smartphone-
associated hand-held thermal camera images. We incorporate
visual structural connections among building components in
identifying thermal variation by presenting the structural re-
lationship among building components with high-level graph
representation. Individual objects (e.g., furniture) have their
thermal profile that could lead to potential anomaly; hence
we ignore the objects around building components in thermal
variation analysis, extract spatial and temporal features, and
assign cluster labels to each component in the temporal
sequence considering their adjacent building component. Our
contributions to this work are as follows:

• We identify the thermal anomalies for building com-
ponents that provide data-driven knowledge about the
thermal characteristics of indoor surfaces as a potential
indicator of thermal leakage.

• We construct a masked graph from thermal images to cap-
ture building components’ thermal correlation and pro-
pose a novel unsupervised graph-based spatio-temporal
deep clustering network-based systematic framework for
thermal status monitoring by incorporating structural ori-
entation among different building components from the
indoor scene.

• We collected a novel thermal image dataset for an indoor
built environment, annotated the dataset with different
categories of building components, and evaluated our
model performance. To showcase our model’s efficacy
and effectiveness, we compare our model performance in
the presence of state-of-the-art models.

II. RELATED WORKS

In this section, we mention the relevant works on thermal
image based building envelope monitoring and graph based
spatio-temporal analysis.

Thermal image based building envelope monitoring has
drawn attention to few research groups in recent years. Smart
building research area is vastly populated with maintaining
thermal comfort, suggesting optimized energy consumption,
precise energy disaggregation [12], privacy preservation [13]
etc. However, the studies on building components and its
energy efficiency monitoring involving IoT based devices,
such as, thermal imagers are still not in the mainstream. The
key areas of researches include thermal image processing to
determine areas of concern, calibration and validation of ther-
mal cameras [14], [15], thermal transmittance using thermal

images [16], integration of thermal image monitoring system
with HVAC monitoring system [17] as well as case studies
in controlled environments [9]. However, in order to identify
the damage prone areas in building envelope, both qualitative
and quantitative studies are performed using thermal images.
Qualitative analysis usually detects the damage prone areas by
visual comparison of thermal heatmap in the thermal images
while quantitative studies deals the problem from theoretical
and computer vision perspectives [11], [18]–[20] in order to
detect the commonly known air leakage areas. Unmanned
aerial systems equipped with IR cameras is also being used
to detect the thermal anomalies using threshold based image
processing techniques [10], CAD modeling [21]. However,
most of the studies detect thermal anomalies in outside built
environment and skipped structural orientation as well as
temporal affects of thermal variation inside built environment.
In this work, we incorporated structural information to detect
thermal anomalies in inside built environment unsupervisedly
from longitudinal thermal images of different building com-
ponents.

Graph based spatio-temporal analysis is performed in
many domains to understand the spatially and temporally
evolving systems. Several known example includes human
motion detection [22], posture detection, reference object
tracking in satellite [23] and rgb images [24] and many more.
Depending on the domain based problem, several graph based
spatio-temporal feature learning architectures are proposed in
the literature. Bi et al. proposed graph convolution based
architecture for neuromorphic vision sensing which learns
composite spatial feature for several tasks such as, classifying
objects, event labeling [25]. Spatio-temporal relation between
actors and objects are represented by multi-layer dynamic
graph representation to detect human activity in video clips
[26]. In [27] spatial and temporal graph neural networks are
used separately for capturing features from spatial interaction
and temporal motion to predict pedestrian trajectories. Jain
et al. proposed a spatio-temporal feature learning architecture
which provides factorized spatio-temporal graphs for learning
features in complex systems [22] like human motion detection.
Inspired from this work, in order to demonstrate spatio-
temporal thermal variation in building components using their
structural connection and temporal thermal evolution, we
represent the inside built environment using a high level spatio-
temporal graphs and propose a novel unsupervised clustering
based thermal anomalies detection framework.

III. PROBLEM FORMULATION

In this section we formulate our thermal variation analysis
problem as thermal anomaly detection. We consider thermal
anomaly as sudden or abnormal thermal changes on the
surfaces of built environment. Usually in and out flow of air
through small places can change the thermal condition on
the surfaces over time. The goal of our work is to identify
the location and time of the thermal anomaly from temporal
thermal data of inside built surfaces. Assume IBw

is the
set of temporal thermal images I0, I1, · · · , It for a building

2



component Bw and we want to extract the subset of images
Ik ∈ IBw where most thermal variation occurred over the
considered period of time. Assume Bd and Bc are two other
neighboring building components of Bw. We clustered the set
of images IBw

into Nc number of clusters and measures the
anomaly score for each image instances. We combine spatial
and temporal features of Bw and its neighbors Bd and Bc

to assign cluster labels to the instances of IBw . The cluster
assignment function can be expressed as follows:

CIt
Bwi
→ f (Bwt1,··· ,tn

, Bdt1,··· ,tn
, Bct1,··· ,tn

) (1)

In the final step, we extract top-k images having higher
anomaly score for further qualitative analysis of thermal
variation.

IV. PROPOSED FRAMEWORK

In this section, the principle modules of our proposed frame-
work for thermal status monitoring in inside built monitoring
is discussed in detail.

A. Data collection and organization

Previous literature described several issues in collecting
and processing longitudinal thermal images, such as privacy
concern, prolonged device deployment, maintaining consis-
tency, charge duration etc. However, keeping those issues in
consideration, we designed our longitudinal thermal image
data collection strategically. Instead of continuous capturing
images, we collected images for few minutes in several con-
secutive hours as surface temperature in inside environment
usually changes very slowly. We set the thermal camera on
a rotational mount for data collection to cover the desired
area in a place for thermal investigation. In this way we
can capture thermal images from multiple surfaces altogether
simultaneously and relate their thermal variation. In order to
deal with the overlapping areas in the captured images, we ask
for a human input to select any number of key frames from the
captured images so that the frames are completely different to
each other. Given a set of key frames and the entire set of
images, we perform a simple image retrieval algorithm which
finds the top-k most similar images using kNN on the image
embeddings with cosine similarity as the distance metric. The
image retrieval algorithm is presented in algorithm 1.

Algorithm 1 Image set Construction

1: procedure SIMILAR IMAGE RETRIEVAL(Input: Key
Frames Iq(Iq1, Iq2, · · · , Iqn), k, Captured Images D
Output: Sq(Sq1, Sq2, · · · , Sqn))

2: Fq ← Features for each of key images Iq
3: Fd ← Features for each of the images in D
4: for each Iqi in Iq do
5: Scores ← CosineDistance(Iqi, Di) for Di in D
6: Sort the score values in (Scores)
7: Sqi ← Dj if Scores[Dj ] is in the top k-most

images
8: return Sq

(a) Indoor scene (b) Segmentation of building components

Fig. 1: An example of a indoor scene and corresponding
building component annotation

B. Data Pre-processing

In data pre-processing step, we pre-process the retrieved
images in the previous step. We extract thermal and visual im-
ages of same size from raw MSX (i.e., Multi-spectral dynamic
imaging) thermal images. Next, we annotate the segments
containing different building components (i.e., wall, ceiling,
windows, doors etc.) in the visual images. We also annotate
the adjacent joint regions around each building components.
Later, we map the temperature values to the image patches
consisting of the region of our interest from the corresponding
thermal images. We use this temperature map for masking the
area in the image. We prepare mask images for each building
component present in a single image separately. Then, we
compile a temporal series of mask images for each of the
building components according to the timestamp associated
with original collected images.

C. Spatio-temporal representation of building components

In this subsection, we describe the construction of st-graph
with building components and the process of factorized st-
graph for our thermal variation analysis in building component
.

1) St-graph representation: We represent the spatial and
temporal connections among each building components using
high level spatio-temporal graphs (st-graph). Assume a st-
graph G = (V,ES , ET ) where V represents the building
components as nodes, ES represents structural connection and
ET represents temporal self connection. Figure 1 presents
an example of indoor scene with corresponding annotation
of different building components. Figure 2(a) shows the st-
graph presenting the spatial and temporal connection among
different building components (identified in figure 1(b)) for
the given indoor scene in figure 1(a). In the compressed st-
graph in figure 2(a), temporal edges are showed as loop or
self-edges, which refers one building component connected to
itself at next timestamp, e.g. Bd at time t connected to Bd at
t+ 1. The nodes v ∈ V and edges e ∈ ES ∪ET repeats over
the time for all the images in the dataset. Figure 2(b) shows
the same st-graph unrolled over time. The unrolled st-graph
shows at a certain time t, nodes are connected to each other
with undirected spatial edges es ∈ ES (e.g. Bd

t and Bt
w1

)
while temporal edges et ∈ ET connects to the node itself
at next timestamp (e.g. Bd

t and Bd
(t+1)). However, in this
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(a) St-graph representation

(b) Unrolled through time

Fig. 2: An example of spatio-temporal graph (st-graph) for a
indoor scene

work, the purpose of the graph representation is to incorporate
the structural connection in the thermal variation analysis of
building components. Here, we considered two walls as two
different nodes in the st-graph although they are similar kind
of building components. We assume the corresponding thermal
variation for these two walls would be different from each
other as the orientation and the sunlight exposure of these
two walls are different.

2) Simplifying st-graph: The cluster assignment C of one
node at a certain time depends on the status of this node
over a time window as well as the edges associated with
it (as expressed in equation 1). In order to represent the
complex spatio-temporal system, we use factor graph which
simplifies the complex function by introducing multiple simple
functions. We present the corresponding factors in figure 3(a)
and bipartite factor graph in figure 3(b) for the st-graph
showed in figure 2. The factor graph shows the factor functions
representing spatial and temporal relations among the build-
ing component nodes. As example, the temporal connection
between same nodes of Bd are presented by factor function
ϕd,d(Cdt :→ Bdt1,··· ,tn

) for each node while the structural
connection among two different nodes (i.e., Bd and Bw1

)
presented by pairwise factor function ϕd,w2

(Cdw2
:→ Bdw2

)
for edge (Bd, Bw2) ∈ G. In the factor graph, one factor is
connected to another factor if the corresponding nodes are
connected in G. For example, ϕd,d is connected to ϕd,w2

through ϕd.

D. Unsupervised combined feature learning

In this subsection, we propose a deep learning based un-
supervised feature learning architecture which combines node
and edge features at each time step based on the constructed
factor graph and perform more computations on the features
for cluster label assignment. Three main modules in the
architecture are described as follows.

(a) factor components

(b) factor graph

Fig. 3: Factor graph representation of the st-graph (disjoint
node factors and edge factors construct a bipartite graph)

1) Encoded node and edge representation: We used convo-
lution neural network based autoencoder to extract features for
each nodes and edges in the st-graph from the corresponding
sequential mask images. Assume I = {I1, I2, · · · , IN} be
a set of I mask images for a building component. Mask
images contain temperature values for the patches of build-
ing components. Autoencoders learns the local features of
temperature values by reproducing the similar mask image.
Usually autoencoders consist of an encoder and a decoder. In
the encoding phase, we reduce the dimension of input data
while in the decoding phase, we reconstruct the input data
from encoded representation. The reconstruction loss from
autoencoder can be represented as follows:

Lr =
1

Ntotal

Ntotal∑
i=1

||Ii − Īi||2 (2)

where Ntotal is the total number of images, Īi is the recon-
structed output of input Ii.

2) Combine spatial and temporal features: The factors in
the st-graph operate in temporal manner. In order to extract
temporal features we use LSTM based recurrent neural net-
works. We represent each node and edge factor with LSTM
based recurrent neural networks to extract the temporal fea-
tures. We refer the LSTM networks obtained from node factors
as nodeLSTMs and the LSTM networks obtained from edge
factors as edgeLSTMs. We pass the encoded features of nodes
and edges to separate recurrent neural networks in order to
capture the temporal latent representations associated with
them. The interaction among building components presented in
the st-graph are reflected by connections between node LSTMs
and the edgeLSTMs. We denote LSTMs corresponding to node
factor ϕV as TV and the edge factor ϕE as TE . In order
to obtain a feed forward network, we connect the node and
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edge LSTMs following the corresponding node connections
in bipartite graph showed in figure 3(b). In particular, the
edgeLSTM TE is connected to the nodeLSTM TV if the factors
ϕV and ϕE are neighbors in st-graph. It refers to the fact
that they jointly affect the labels of node in the st-graph. We
concatenate node LSTMs and edge LSTMs and the last layer
representation from the LSTM network is feed to a clustering
layer.

3) Self-supervised clustering: In the clustering module, the
LSTMs for node factors learns the temporal representations
in self-supervised way presented in [28]. We pre-train the
autoencoders and later we train the autoencoders as well
as nodeLSTMs and edgeLSTMs end-to-end to assign cluster
labels to the corresponding nodes in the st-graph. In clustering
module, we compute the similarity between the node repre-
sentation B and the cluster vector µj using the Student’s t-
distribution as kernel. Assume qij is the probability of node
Bv to be assigned to cluster j. Hence, the Q = [qij ] is the
distribution of the cluster assignments of all samples. After
computing the distribution Q of all cluster assignments, we
intend to optimize the latent representation of the nodes so
that the data representation get closer to the cluster centers
and improves cluster coherence. We computed a target dis-
tribution P from Q (equation 3) which improves the latent
representation generation using the KL divergence loss Lc,
between Q and P (equation 4). As P is calculated from Q,
using P for updating Q might end up in trivial assignment.
Therefore,

pij =
q2ij/fj∑

j′∈K q2ij′/f
′
j

(3)

Lc = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

(4)

we use the distribution of cluster assignments Z from nodeL-
STM which can be supervised by target distribution P with
following objective function. The KL divergence loss between
Z and P , Lz is computed similarly as in equation 4 and
incorporated in the overall loss function. The overall loss
function of the proposed architecture is as follows:

L = LR + αLc + βLz (5)

where LR is total reconstruction loss from autoencoders (i.e.,
nodes and edges), α, β > 0 are hyper-parameters to balance
the clustering optimization preserving the local structure of
raw data and to avoid the inference from nodeLSTM in
the embedding space. After training for a certain number of
epochs when the model reached to a stable condition, we
predict the soft assignments in distribution Z.

E. Training

In order to train the architecture, we first the pretrain the
autoencoders for each node and edges to obtain the encoded
representation. As example, figure 5 shows the forward pass
for node Bw1

. We feed these encoded representation as fea-
tures to the LSTM networks for further processing. In forward
pass for node Bw1 , we have to consider two edges (i.e., Bw1w2

Fig. 4: Model architecture

Fig. 5: Feed forward for Bw1

and Bw1c) associated with this node. The input to edge LSTMs
Tw1w2 and Tw1c is the temporal mask images Iw1w2 and Iw1c,
respectively. In the edge LSTMs Tw1w1

, we pass the sequential
encoded representation Hw1

for node Bw1
. We concatenate

layer to layer representations from edge LSTMs Tw1w2
and

Tw1c. Later, node LSTM Tw1
, at each time step, combines the

output of Tw1w1 to the concatenated edge features from Tw1w2

and Tw1c. The final output of Tw1 are passed to the clustering
module to assign cluster labels to the node. Gradients are
updated from end-end to optimize the combined loss from
all the modules. The overall training algorithm is presented
in algorithm 2 and the comprehensive model architecture is
depicted in figure 4.

F. Thermal anomaly interpretation

We calculated anomaly scores for each of the images to
quantify the deviation of the temperature in the image. For
anomaly score computation, we calculated the cosine distance
between the image instance and the associated cluster center
to it as follows,

Anomaly score(Ii) =
Ii · ci
||Ii|| ||ci||

(6)

where Ii is the image instance and ci is the cluster center.
We identify the k snaps from each cluster which has higher
anomaly scores for each building component to perform
further qualitative analysis. In order to justify the anomaly
score in interpreting the thermal variation, we use a statistical
measure, Percentage of Anomaly Score Justification (PASJ).
Assume the number of images show visual thermal variation
nt and total number of image selected by top-k anomaly score
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Algorithm 2 Training for unsupervised clustering

1: procedure TRAINING(Input: Graph G (V,Es, ET ), out-
put: Cv = c1, · · · , cn)

2: Encode each node: HV =HI , · · · , Hn

3: Encode each edges: e ∈ Es He = He1 , · · · , Hep

4: Temporal representation for each node TViVi ←
edgeLSTM (HVi)

5: Temporal representation for each edge TEi
← edgeL-

STM (Hei)
6: Concatenate l layer of temporal representation for each

pair of edges Teiej ← H l
ei ⊕Hl

ej where (ei, ej) ∈ Es

7: Connect TVi ⊕ Teiej in TV E

8: Represent TV E with nodeLSTM TV
9: Compute z with ClusteringLayer(TV E)

10: Compute cluster labels C from z
11: Return Cv = c1, · · · , cn

Nk, the percentage of top-k anomaly score justification Pk is
as follows:

Pk =
nt

Nk
∗ 100% (7)

V. EXPERIMENTAL SETUP

In this section, we present our data acquisition, pre-
processing techniques as well as quantitative evaluation and
qualitative analysis of the thermal status of various building
components applying our proposed framework with two case
studies.

A. Data acquisition

We collected thermal images of indoor built environment us-
ing a android smartphone associated FLIROne thermal camera
which provides both the RGB and thermal images. Thermal
resolution of the collected images are 640×480. We deployed
the hand-held smartphone associated thermal camera on a
rotating mount placed on top of a height adjustable tripod
as depicted in figure 6. Therefore, we can cover the maximum
area we want to investigate as well as capture images of
multiple surfaces simultaneously. For our data collection, we
captured the images from 1-1.5 meter distance from all the
considered surfaces. We also developed an android application
to collect longitudinal thermal images which captures images
in every 10 seconds. We collected data in consecutive 4-
5 hours at different time of several days from two indoor
scenes. Each hour we captured images for 10 minutes by
180◦ camera rotation. Figure 7(a) provides the visual frames of
one rotation of the camera. We collected approximately 5000
thermal images in about 15 hours of data collection for each
of indoor scenes.

B. Data pre-processing

We pre-process the raw MSX thermal images by extracting
thermal and visual images. We extract temperature values
in celsius unit. However, extracted thermal images are one-
channel temperature values associated with the surface. Later,
we identify the building components of our interest and select

Fig. 6: Overall setup for data collection. While keeping the
smartphone thermal camera on a rotating mounting (360
degrees) to capture thermal images of different example ro-
tational positions (a), (b), (c), (d).

(a) Captured snaps from one rotation of camera

(b) View of the scene by combining key frames

Fig. 7: Example of captured images and summary scene

the key frames from the pool of collected images where key
frames have no overlapping areas among them. This helps
in identifying the set of images similar to key frames which
consist of building components of our interest. Figure 7(a)
shows the captured images in one rotation of the camera and
the selected key frames by human selection are highlighted
with red box in figure 7(b).

In next phase, we annotated the image patches which
contains building components. Figure 8(a) shows an example
annotation for the three images of indoor scene-I. Another
scene considered in our experiment is showed in figure 10.
However, in order to prepare the temperature mask images of
building components, we exclude the pixels of other objects
and components inside of the concerned component. In that
way, we prepare the list of temporal mask images for each
building components and arrange them in a sequence accord-
ing to the associated timestamp. As example, the middle image
in figure 7(b) shares the walls both from left and right side.
The list of mask images for one of the walls contains the
corresponding wall patches from all the snaps and align them
according to the snap timestamp. We map these image patches
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(a) Annotations

(b) Mask images of building components

Fig. 8: Annotated area of interests and corresponding mask
images

to temperature values from the corresponding thermal image.
The annotated building components and corresponding masks
for building components (i.e., door and two walls) in the scene
frames (presented in figure 7(b)), are showed in the figure 8(a)
and (b), respectively.

C. Implementation details

The experiments are conducted on a Linux server integrated
with Intel i7-6850K CPU, 4x NVIDIA GeForce GTX 1080Ti
GPUs and 64GB RAM. All the codes of data preprocessing,
visualization and deep learning algorithms are implemented
with Python. Especially for deep learning, PyTorch libraries
are used. In order to pre-process the large amount of image
data parallel processing, and trained the entire network by
distributing the data among two gpus.

We used three blocks of convolution and maxpooling layer
for the encoding layers of autoencoder. The kernel filter size
for three convolution layer is (4,4), (4,6) and (2,2). After the
third convolution block in the encoder, the output is flattened
and used as the encoded representation of the mask images.
In the decoder, the filter sizes are reversed. Encoded output of
node and edges are passes through three LSTM layers. The
dimension for the node LSTMs are obtained by dividing the
output size of three encoding layers for the node by 2. The
dimension for the edgeLSTMs are derived from the encoded
output size of the edges. We obtained the first, second and
third lstm layer output dimension by dividing the encoded
output dimension of edge by 4, 8 and 16 respectively. We
pretrained the autoencoders for 100 epochs and trained the
clustering module for 60 epochs on average until the cluster
assignments stops changing.

D. Evaluation

We evaluate the proposed model with two other relevant
base models i.e., DEC [29] and LSTM-3lr [30] of deep
clustering using our collected dataset. Here, we select these
two base deep clustering models as one of them i.e., DEC uses
spatial features and the other one i.e., LSTM 3-lr uses temporal

features. This helps us in understanding the advantage of
using both spatial and temporal features together for deep
clustering as well as incorporating clustering loss to construct
the encoded representation. The brief description of two base
models are as follows:

Deep Embedded Clustering (DEC) introduces the concept
of simultaneous optimization of both data representation at
lower dimensional space and clustering loss [29].

LSTM 3-lr proposed by Ghosh et al. combines a three layer
LSTM network with a dropout autoencoder to capture tempo-
ral features of human posture [30] to predict human motion
over a long period of time . We deployed this architecture by
using a drop-out autoencoder for extracting spatial features for
mask images and later filter the prediction by each building
component the same architecture.

We use two clustering metrics i.e., NMI, ARI to evaluate our
proposed unsupervised spatio-temporal clustering for thermal
anomaly detection. Besides, from qualitative analysis we also
provide empirical measure, PASJ which provides the percent-
age of top-k extracted images having visual appearance of
thermal variation. This score provides the idea of statistically
how much we can rely on the finally extracted snaps for
observation.

We present the evaluation results from two baseline models
and the proposed model in table I. Our proposed model
achieves better cluster with temporal building components
than the other two models. From the qualitative analysis, we
observe that DEC assigns different cluster label to visibly
similar thermal variation in the sequence while LSTM 3-
LR deals same building components from overlapping snaps
similarly and performs poorly for the components having
smaller area, like, ceiling and ventilators in our scenarios.

TABLE I: Evaluation metrics

Metrics DEC LSTM-3LR Proposed
scene-I scene-II scene-I scene-II scene-I scene-II

NMI 0.467 0.452 0.569 0.558 0.799 0.781
ARI 0.697 0.651 0.478 0.450 0.745 0.727
PASJ 69.7% 65.1% 47.8% 45.0% 70% 72%

E. Thermal variation analysis

Here we present the qualitative analysis of thermal variation
for indoor scenario presented in figure 7 and 10. We present
the thermal status of four building components, i.e., door,
two walls on the left and right of the door and ceiling in
the scene. Figure 9 shows the thermal gradient for these
building components along with the associated anomaly score
calculated from three clusters separately. We visualized the
thermal status for each of the building components having
highest two anomaly scores from each three clusters. The first
two columns (i.e., i and ii) in the figure show the images from
cluster C1, next two columns (i.e., iii and iv) show images
from cluster C2, and the last two columns (i.e., iv and v) for
C3.
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(a) wall1

(b) door

(c) wall2

(d) ceiling

Fig. 9: Thermal variation over building components for indoor scene-I

Scene-I: We can observe the patterns of thermal changes
over the places in the first indoor scene from figure 9(a)-(d)
as follows.

Walls: In figure 9(a) shows the sparse thermal change on
the left side wall (i.e., wall1) of the door. The images in the
columns i-iv of this row show higher intensity in the middle
which occurs due to sun reflection on wall1 from the opposite
window. In the last two column v-vi, higher intensity of cooler
temperature can be noticed for the wind flow through the door
and window from two sides of this wall. Figure 9(c) shows
the thermal status change for wall2. Similar to wall1, sun
reflection from the opposite window and wind flow through
the door explains higher intensity of warmer and cooler tone
on the right and left side of the wall, respectively.

Door: In figure 9(b)(i-vi), we notice the air flow from all
four sides of the door through door gaps. We can observe
higher intensity of thermal change through top and bottom
gap of the door.

Ceiling: Thermal changes for ceiling portion from three
images (figure 7) are showed in figure 9(d). The ceiling portion
in the first four columns i-iv comes from the leftmost image
of the scene 9 where we observe higher intensity of thermal
change in the middle portion of ceiling. The images in the
last two columns v-vi of this row, comes from the rightmost
image of the scene in figure 7. Thermal bridge or the sunlight
reflection might cause the higher intensity in this area.

(a) visual of indoor scene (b) Annotations

Fig. 10: Indoor scene-II and annotation of corresponding
building components

Scene-II: In the second scenario, we deploy our framework
for another indoor scene presented in figure 10(a). In this case,
we placed the camera in a static position and collected the
thermal images for spot longitudinally. The annotation of the
building components for this scene are depicted in figure 10(b).

We consider four building components (i.e., window, left
and right side wall of the window) for the scene. The dataset
was collected in a snowy day with open and closed window
condition. Therefore, the thermal status of different building
components in this figure shows cooler tone. However, we can
visually observe the impact of extreme cold weather on the
inside surfaces around the window area, presented in figure
11(a)-(c). Similarly, the snaps with top-2 highest anomaly
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(a) wall1

(b) wall2

(c) window

Fig. 11: Thermal variation over building components for indoor scene-II

scores from three clusters are presented here. The thermal
changes over a time period is showed in the figure. We can
notice different intensity of cooler tone on the surface.

Walls: In figure 11(a) and (b) we can observe thermal
changes over the adjacent walls of the window. For the left
side wall (i.e., wall1), figure 11(a) shows very similar thermal
changes for each of the clusters. For the wall around the
window area, the images in the columns i-iv of figure 11(b)
show higher intensity. In the last two column v-vi, we observe
similar temperature over the entire area except few spots.

Window: Figure 9(c)(i-ii) and (v-vi) show the thermal status
of the window when the left part of it kept open. We observe
higher intensity of cooler tone in the upper right corner of the
window in i-ii of this figure. For figure 9(c)(iii-iv) represents
the window status when its left side is covered.

F. Individual building component

We present the NMI and ARI for each building component
in two indoor scenes in figure 12. We observe the clustering
metrics for wall components are relatively lower than the other
components, as the temperature on wall surfaces are more
sparse than that of others. The clusters for smaller area like
ceiling and ventilator achieves better cluster metrics which
indicates the differentiation of subtle thermal changes over
these area.

VI. DISCUSSION

Our proposed thermal anomaly detection framework, pro-
vides the location and time of the thermal anomalies for
different building components in inside built surfaces from
unsupervised clustering approach. From spatio-temporal per-
spective, as it is difficult to define the ground truth of ther-
mal anomalies, we approach this problem from unsupervised

(a) Indoor scene I (b) Indoor scene II

Fig. 12: Cluster metrics obtained from target distribution

manner. We considered detecting the sudden thermal changes
in surfaces like wall along with the conventional spaces i.e.,
around the door and window. We connect the thermal status
of adjacent door and windows through high level spatio-
temporal graphs to determine the thermal status of a building
component like walls and ceiling. However, the construction
of st-graph may vary upon how much contextual factors we
want to consider. In our experiments, we only considered the
visible structural connection among building components. As
we followed unsupervised approach in our work, we could
not evaluate the approach with other metrics, such as, AMI
and mIoU used in image segmentation based thermal anomaly
detection approach [11]. In this work, we skipped tracking
air flow in indoor scenarios which would be beneficial to
understand the thermal comfort of inhabitants in more practical
way. In the future extension of this work, we plan to extend
our experiment to the indoor scenarios with more building
components in order to evaluate the robustness of our proposed
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model.

VII. CONCLUSION

In this work, we proposed a end-to-end framework for
systematic thermal evaluation of inside built environment
using low-cost non-intrusive IoT-devices without metadata of
buildings. Our graph representation of spatio-temporal thermal
correlation among building components assist in understanding
the non-trivial thermal variation on building indoor surfaces
as well as identifying the location of energy leakages which
can reduce energy consumption and prevents severe damages
beforehand.

ACKNOWLEDGMENT

This work has been supported by U.S. Army grant
W911NF2120076 and ONR grant N00014-18-1-2462.

REFERENCES

[1] “Energy bills — department of energy information administration,”
2021.

[2] “Use of energy in homes — department of energy information admin-
istration,” 2015.

[3] “Energy loss in homes and the benefits of insulation [infographic]: How
to insulate a home buying guide to home insulation,” 2013.

[4] M. K. Singh, S. Mahapatra, S. Atreya, and B. Givoni, “Thermal
monitoring and indoor temperature modeling in vernacular buildings of
north-east india,” Energy and Buildings, vol. 42, no. 10, pp. 1610–1618,
2010.

[5] N. Khan, M. Ahmed, and N. Roy, “Temporal clustering based thermal
condition monitoring in building,” Sustainable Computing: Informatics
and Systems, vol. 29, p. 100441, 2021.

[6] N. Khan and N. Roy, “Builtnet: Graph based spatio-temporal indoor
thermal variation detection,” in 2021 20th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), pp. 1696–1703,
IEEE, 2021.

[7] W. Liu, X. Zhao, and Q. Chen, “A novel method for measuring air
infiltration rate in buildings,” Energy and Buildings, vol. 168, pp. 309–
318, 2018.

[8] J. L. Lerma, M. Cabrelles, and C. Portalés, “Multitemporal thermal
analysis to detect moisture on a building façade,” Construction and
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